Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Mogensen 2006 J Physiol"

From Bioblast
Line 8: Line 8:
|editor=[[Gnaiger E]],
|editor=[[Gnaiger E]],
}}
}}
{{Labeling
__TOC__
|area=Respiration, Exercise physiology;nutrition;life style
|organism=Human
|tissues=Skeletal muscle
|preparations=Isolated mitochondria
|couplingstates=LEAK, OXPHOS
|pathways=N
|additional=MitoEAGLE BME,
}}
== MitoEAGLE ''V''<sub>O2max</sub>/BME data base ==
== MitoEAGLE ''V''<sub>O2max</sub>/BME data base ==


Line 49: Line 41:
::::* 9.8 µM mt-protein/mg ''m''<sub>w</sub>
::::* 9.8 µM mt-protein/mg ''m''<sub>w</sub>
----
----
{{References: BME and VO2max}}
{{Labeling
|area=Respiration, Exercise physiology;nutrition;life style
|organism=Human
|tissues=Skeletal muscle
|preparations=Isolated mitochondria
|couplingstates=LEAK, OXPHOS
|pathways=N
|additional=MitoEAGLE BME, BMI, VO2max, BME
}}

Revision as of 03:58, 8 February 2020

Publications in the MiPMap
Mogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.

» PMID: 16423857 Open Access

Hey-Mogensen M, Bagger M, Pedersen PK, Fernstroem M, Sahlin K (2006) J Physiol

Abstract: The purpose of this study was to investigate the hypothesis that cycling efficiency in vivo is related to mitochondrial efficiency measured in vitro and to investigate the effect of training status on these parameters. Nine endurance trained and nine untrained male subjects (V(O2peak) = 60.4 +/- 1.4 and 37.0 +/- 2.0 ml kg(-1) min(-1), respectively) completed an incremental submaximal efficiency test for determination of cycling efficiency (gross efficiency, work efficiency (WE) and delta efficiency). Muscle biopsies were taken from m. vastus lateralis and analysed for mitochondrial respiration, mitochondrial efficiency (MEff; i.e. P/O ratio), UCP3 protein content and fibre type composition (% MHC I). MEff was determined in isolated mitochondria during maximal (state 3) and submaximal (constant rate of ADP infusion) rates of respiration with pyruvate. The rates of mitochondrial respiration and oxidative phosphorylation per muscle mass were about 40% higher in trained subjects but were not different when expressed per unit citrate synthase (CS) activity (a marker of mitochondrial density). Training status had no influence on WE (trained 28.0 +/- 0.5, untrained 27.7 +/- 0.8 %, N.S.). Muscle UCP3 was 52 % higher in untrained subjects, when expressed per muscle mass (P < 0.05 versus trained). WE was inversely correlated to UCP3 (r = -0.57, P < 0.05) and positively correlated to percentage MHC I (r = 0.58, P < 0.05). MEff was lower (P < 0.05) at submaximal respiration rates (2.39 +/- 0.01 at 50 % V(O2max)) than at state 3 (2.48 +/- 0.01) but was neither influenced by training status nor correlated to cycling efficiency. In conclusion cycling efficiency was not influenced by training status and not correlated to MEff, but was related to type I fibres and inversely related to UCP3. The inverse correlation between WE and UCP3 indicates that extrinsic factors may influence UCP3 activity and thus MEff in vivo.

Bioblast editor: Gnaiger E

MitoEAGLE VO2max/BME data base

  • Human vastus lateralis
  • 9 males
  • 25 years
  • Trained; high level of habitual physical activity; 45.7 % MHC I fibers
  • h = 1.75 m
  • m = 72.6 kg
  • BME = 1.16
  • BMI = 23.7 kg·m-2
  • VO2max/BM = 60.4 mL·min-1·kg-1 (graded maximal test)
  • Isolated mitochondria; 25 °C; PMP; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 143.6 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(PM) = 91.9 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(NS) = JO2,P(PM)/0.64
  • 12.2 µM mt-protein/mg mw

  • Human vastus lateralis
  • 9 males
  • 24.2 years
  • Untrained; low level of habitual physical activity; 42.9 % MHC I fibers
  • h = 1.82 m
  • m = 88.7 kg
  • BME = 1.26
  • BMI = 26.8 kg·m-2
  • VO2max/BM = 37.0 mL·min-1·kg-1 (graded maximal test)
  • Isolated mitochondria; 25 °C; PMP; conversions: Gnaiger 2009 Int J Biochem Cell Biol
  • JO2,P(NS) = 101.7 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(PM) = 65.1 µmol·s-1·kg-1 wet muscle mass (37 °C)
  • JO2,P(NS) = JO2,P(PM)/0.64
  • 9.8 µM mt-protein/mg mw

References: BME and VO2max

» VO2max
 Reference
Bakkman 2007 ActaPhysiolBakkman L, Sahlin K, Holmberg HC, Tonkonogi M (2007) Quantitative and qualitative adaptation of human skeletal muscle mitochondria to hypoxic compared with normoxic training at the same relative work rate. Acta Physiol (Oxford) 190:243–51.
Boushel 2007 DiabetologiaBoushel RC, Gnaiger E, Schjerling P, Skovbro M, Kraunsoee R, Dela F (2007) Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia 50:790-6.
Chambers 2020 J Appl Physiol (1985)Chambers TL, Burnett TR, Raue U, Lee GA, Finch WH, Graham BM, Trappe TA, Trappe S (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise. J Appl Physiol (1985) 128:368–78.
Daussin 2008 Am J Physiol Regul Integr Comp PhysiolDaussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295:R264-72.
Garnier 2005 FASEB JGarnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43-52.
Gnaiger 2015 Scand J Med Sci SportsGnaiger E, Boushel R, Søndergaard H, Munch-Andersen T, Damsgaard R, Hagen C, Díez-Sánchez C, Ara I, Wright-Paradis C, Schrauwen P, Hesselink M, Calbet JAL, Christiansen M, Helge JW, Saltin B (2015) Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and caucasians in the arctic winter. https://doi.org/10.1111/sms.12612
Gnaiger 2019 MiP2019
Erich Gnaiger
OXPHOS capacity in human muscle tissue and body mass excess – the MitoEAGLE mission towards an integrative database (Version 6; 2020-01-12).
Loe 2013 PLOS ONELoe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PLOS ONE 8:e64319.
Mettauer 2001 J Am Coll CardiolMettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947-54.
Mogensen 2006 J PhysiolMogensen M, Bagger M, Pedersen PK, Fernström M, Sahlin K (2006) Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol 571:669-81.
N'Guessan 2004 Mol Cell BiochemN'Guessan B, Zoll J, Ribera F, Ponsot E, Lampert E, Ventura-Clapier R, Veksler V, Mettauer B (2004) Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles. Mol Cell Biochem 256-257:267-80.
Pesta 2011 Am J Physiol Regul Integr Comp PhysiolPesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87.
Ponsot 2006 J Appl Physiol (1985)Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R (2006) Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 100:1249-57.
Pribis 2010 NutrientsPribis P, Burtnack CA, McKenzie SO, Thayer J (2010) Trends in body fat, body mass index and physical fitness among male and female college students. Nutrients 2:1075-85.
Raboel 2009 Diabetes Obes MetabRaboel R, Hojberg PM, Almdal T, Boushel RC, Haugaard SB, Madsbad S, Dela F (2009) Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes. Diabetes Obes Metab 11:355-60.
Rasmussen 2001 Am J Physiol Endocrinol MetabRasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol Endocrinol Metab 280:E301-7.
Rasmussen 2003 Eur J PhysiolRasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch – Eur J Physiol 446:270-78.
Zoll 2002 J PhysiolZoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Surrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543:191-200.


Labels: MiParea: Respiration, Exercise physiology;nutrition;life style 


Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS  Pathway:


MitoEAGLE BME, BMI, VO2max, BME