Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Template:Keywords-MitoPedia BEC 2020.1"

From Bioblast
Line 21: Line 21:
| alternative quinol oxidase || [[Alternative oxidase]] || AOX || - || Fig. 1B
| alternative quinol oxidase || [[Alternative oxidase]] || AOX || - || Fig. 1B
|-
|-
| amount of substance ''X'' || [[Amount]] || ''n''<sub>''X''</sub> or ''n''(''X'') || [mol] || SI; amount ''n'' of ''X'' versus count ''N'' of ''X''
| amount of substance B || [[Amount]] || ''n''<sub>B</sub> or ''n''(B) || [mol] || SI; amount ''n''<sub>B</sub> of B versus count ''N''<sub>B</sub> of B
|-
|-
| ATP yield per O<sub>2</sub> || [[ATP yield]] || ''Y''<sub>P»/O<sub>2</sub></sub> || 1 || P»/O<sub>2</sub> ratio measured in any respiratory state
| ATP yield per O<sub>2</sub> || [[ATP yield]] || ''Y''<sub>P»/O<sub>2</sub></sub> || 1 || P»/O<sub>2</sub> ratio measured in any respiratory state
Line 29: Line 29:
| catabolic reaction || [[Cell respiration]] || k || - || Fig. 1, 3
| catabolic reaction || [[Cell respiration]] || k || - || Fig. 1, 3
|-
|-
| cell count || [[Count]] || ''N''<sub>ce</sub> || [x] || Tab. 4; Fig. 5; ''see'' number of cells; countable object ''X''=ce
| cell count || [[Count]] || ''N''<sub>ce</sub> || [x] || Tab. 4; Fig. 5; ''see'' number of cells; countable object s=ce
|-
|-
| cell-count concentration || [[Concentration]] || ''C''<sub>ce</sub> || [x∙L­<sup>-1</sup>] || Tab. 4; ''C''<sub>ce</sub> = ''N''<sub>ce</sub>∙''V''<sup>-1</sup>; count concentration ''C'' versus amount concentration ''c''; subscript indicates the entity ''X''=ce, but does not signal 'per entity' ('per entity' can only mean 'per count of entity')
| cell-count concentration || [[Concentration]] || ''C''<sub>ce</sub> || [x∙L­<sup>-1</sup>] || Tab. 4; ''C''<sub>ce</sub> = ''N''<sub>ce</sub>∙''V''<sup>-1</sup>; count concentration ''C'' versus amount concentration ''c''; subscript ce indicates the entity type: concentration '''of''' ce. But it does not signal 'per entity', which would be written as 'per cell' ''X''<sub>ce</sub>.
|-
|-
| cell mass || [[Body mass]] || ''m''<sub>ce</sub> || [kg] || Tab. 5; Fig. 5; mass of cells ''m'' versus mass per cell (per cell count) ''M''<sub>''N''<sub>ce</sub></sub>
| cell mass || [[Body mass]] || ''m''<sub>ce</sub> || [kg] || Tab. 5; Fig. 5; mass of cells ''m'' versus mass per cell (per single entity cell) ''M''<sub>''X''<sub>ce</sub></sub>
|-
|-
| cell mass, mass per cell || [[Body mass]] || ''M''<sub>''N<sub>ce</sub></sub> || [kg∙x­<sup>-1</sup>] || Tab. 5; Fig. 5; mass per cell count ''M''<sub>''N''<sub>ce</sub></sub>; upper case ''M'' and subscript ''N'' signal 'per count', subscript ce signals the entity ''X''=ce
| cell mass, mass per cell || [[Body mass]] || ''M''<sub>''X<sub>ce</sub></sub> || [kg∙x­<sup>-1</sup>] || Tab. 5; Fig. 5; mass per single cell ''M''<sub>''X''<sub>ce</sub></sub>; upper case ''M'' and subscript ''X'' signal 'per count', subscript ce signals the entity s=ce; in a context restricted to cells or molecules or a particular organism such as humans, the abbreviated symbol ''M'' [kg∙x­<sup>-1</sup>] provides a sufficiently informative signal, particularly in combination with the explicit unit.
|-
|-
| cell-mass concentration in chamber || [[Concentration]] || ''C''<sub>''m''<sub>ce</sub></sub> || [kg∙L­<sup>-1</sup>] || ''see'' ''C''<sub>''m''<sub>s</sub></sub>: Tab. 4; ''C''<sub>''m''<sub>ce</sub></sub> = ''m''<sub>ce</sub>∙''V''<sup>-1</sup>; upper case ''C'' alone signals 'count concentration' (''C''<sub>''N''</sub> would be more explicit), whereas the signal for 'mass concentration' is in the combination ''C''<sub>''m''</sub>
| cell-mass concentration in chamber || [[Concentration]] || ''C''<sub>''m''<sub>ce</sub></sub> || [kg∙L­<sup>-1</sup>] || ''see'' ''C''<sub>''m''<sub>s</sub></sub>: Tab. 4; ''C''<sub>''m''<sub>ce</sub></sub> = ''m''<sub>ce</sub>∙''V''<sup>-1</sup>; upper case ''C'' alone would signal 'count concentration' (''C''<sub>''N''</sub> is more explicit), whereas the signal for 'mass concentration' is in the combination ''C''<sub>''m''</sub>.
|-
|-
| cell viability index || [[Cell viability]] || ''VI'' || - || ''VI'' = ''N''<sub>vce</sub>∙''N''<sub>ce­</sub><sup>-1</sup> = 1 - ''N''<sub>dce</sub>∙''N''<sub>ce­</sub><sup>-1</sup>
| cell viability index || [[Cell viability]] || ''VI'' || - || ''VI'' = ''N''<sub>vce</sub>∙''N''<sub>ce­</sub><sup>-1</sup> = 1 - ''N''<sub>dce</sub>∙''N''<sub>ce­</sub><sup>-1</sup>
|-
|-
| charge number of entity B || [[Charge number]] || ''z''<sub>B</sub> || 1 || Tab. 6; ''z''<sub>O<sub>2</sub></sub> = 4 [[[Cohen 2008 IUPAC Green Book |24]]]
| charge number per entity ''X''<sub>B</sub> || [[Charge number]] || ''z''<sub>B</sub> || 1 || ''z''<sub>B</sub> = ''Q''<sub>B</sub>·''e''<sup>-1</sup> ([[Cohen 2008 IUPAC Green Book |IUPAC]]); Tab. 6; ''z''<sub>O<sub>2</sub></sub> = = ''Q''<sub>O<sub>2</sub></sub>·''e''<sup>-1</sup> = 4; IUPAC uses the term 'charge number of an ion' which should be changed to 'charge number '''per''' ion', or more clearly to 'charge number '''per ion number''''. The symbol ''z'' carries the message 'number of elementary charges per number', and the subscript carries the message on the type of entity ''X''.
|-
|-
| Complexes I to IV || [[Complex I]] || CI to CIV || - || respiratory ET Complexes are redox proton pumps; Fig. 1B; F<sub>1</sub>F<sub>O</sub>-ATPase is not a redox proton pump of the ETS, hence the term CV is not recommended
| Complexes I to IV || [[Complex I]] || CI to CIV || - || respiratory ET Complexes are redox proton pumps; Fig. 1B; F<sub>1</sub>F<sub>O</sub>-ATPase is not a redox proton pump of the ETS, hence the term CV is not recommended
|-
|-
| concentration of B, amount || [[Concentration]] || ''c''<sub>B</sub> = ''N''<sub>B</sub>∙''V­''<sup>-1</sup> || [mol∙L­<sup>-1</sup>] || SI: amount of substance concentration [[[Cohen 2008 IUPAC Green Book |24]]]
| concentration of B, amount || [[Concentration]] || ''c''<sub>B</sub> = ''N''<sub>B</sub>∙''V­''<sup>-1</sup> || [mol∙L­<sup>-1</sup>] || SI: amount of substance concentration [[[Cohen 2008 IUPAC Green Book |24]]]; the molar and count formats are distinguished as ''n''<sub>B</sub> and ''N''<sub>B</sub>, respectively.
|-
|-
| concentration of O2, amount || [[Concentration]] || ''c''<sub>O<sub>2</sub></sub> = ''n''<sub>O<sub>2</sub></sub>∙''V­''<sup>-1</sup> || [mol∙L­<sup>-1</sup>] || Box 2; [O<sub>2</sub>]
| concentration of O<sub>2</sub>, amount || [[Concentration]] || ''c''<sub>O<sub>2</sub></sub> = ''n''<sub>O<sub>2</sub></sub>∙''V­''<sup>-1</sup> || [mol∙L­<sup>-1</sup>] || Box 2; [O<sub>2</sub>]
|-
|-
| concentration of ''X'', count || [[Concentration]] || ''C<sub>X</sub>'' = ''N<sub>X</sub>''∙''V­''<sup>-1</sup> || [x∙L<sup>-1</sup>] || Tab. 4 (number concentration [[[Cohen 2008 IUPAC Green Book |24]]])
| concentration of s, count || [[Concentration]] || ''C''<sub>s</sub> = ''N''<sub>s</sub>∙''V­''<sup>-1</sup> || [x∙L<sup>-1</sup>] Tab. 4 (number concentration [[[Cohen 2008 IUPAC Green Book |24]]]); the signal for count concentration is given by the upper case ''C'' in contrast to ''c'' for amount concentration. In both cases, the subscript ''X'' indicates the entity type, not to be confused with a number of entities.
|-
|-
| count format || [[Format]] || <u>''N''</u> || [x] || Tab. 4, 5; Fig. 5
| count format || [[Format]] || <u>''N''</u> || [x] || Tab. 4, 5; Fig. 5
|-
|-
| count of ''X'' || [[Count]] || ''N<sub>X</sub>'' || [x] || SI; ''see'' number of entities ''X''
| count of ''X''<sub>s</sub> || [[Count]] || ''N<sub>s</sub>'' || [x] || SI; ''see'' number of entities ''X''<sub>s</sub>
|-
|-
| coupling control || [[Coupling-control ratio]] || ''CCR'' || - || Section 2.4.1
| coupling control || [[Coupling-control ratio]] || ''CCR'' || - || Section 2.4.1
Line 69: Line 69:
| electron transfer system || [[Electron transfer pathway]] || ETS || - || Fig. 2B, 4 (electron transport chain)
| electron transfer system || [[Electron transfer pathway]] || ETS || - || Fig. 2B, 4 (electron transport chain)
|-
|-
| entity || [[Entity]] || ''X'' || [x] || single countable object; Tab. 4
| elementary entity || [[Entity]] || ''X''<sub>s</sub> || [x] || single countable object of sample type s; Tab. 4
|-
|-
| ET capacity || [[ET capacity]] || ''E'' || ''varies'' || rate; Tab. 1; Fig. 2
| ET capacity || [[ET capacity]] || ''E'' || ''varies'' || rate; Tab. 1; Fig. 2
Line 231: Line 231:
| volume format || [[Format]] || <u>''V''</u> || [L] || Tab. 6
| volume format || [[Format]] || <u>''V''</u> || [L] || Tab. 6
|-
|-
| volume of chamber || [[Volume]] || ''V'' || [L] || Tab. 4, 7; Fig. 5
| volume of experimental chamber || [[Volume]] || ''V'' || [L] || liquid volume ''V'' including the sample s; Tab. 4, 7; Fig. 5
|-
|-
| volume of sample s in a mixture || [[Volume]] || ''V''<sub>s</sub> || [L] || Tab. 5; Fig. 5
| volume of sample s in a mixture || [[Volume]] || ''V''<sub>s</sub> || [L] || Tab. 5; Fig. 5

Revision as of 15:50, 5 June 2020


Click to expand or collaps

MitoPedia Keywords—MitoPedia - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>

Keywords—MitoPedia, including Table 8. Terms, symbols, and units. SI base units are used, except for the liter [L = dm3]. SI refers to ref. [11].

Term Link to MitoPedia term Symbol Unit Links and comments
adenosine diphosphate ADP ADP - Tab. 1; Fig. 1, 2, 5
adenosine monophosphate AMP AMP - 2 ADP ↔ ATP+AMP
adenosine triphosphate ATP ATP - Fig. 2, 5
adenylates Adenine nucleotides AMP, ADP, ATP - Section 2.5.1
alternative quinol oxidase Alternative oxidase AOX - Fig. 1B
amount of substance B Amount nB or n(B) [mol] SI; amount nB of B versus count NB of B
ATP yield per O2 ATP yield YP»/O2 1 P»/O2 ratio measured in any respiratory state
catabolic rate of respiration Cell respiration JkO2; IkO2 varies Fig. 1, 3; flux J versus flow I
catabolic reaction Cell respiration k - Fig. 1, 3
cell count Count Nce [x] Tab. 4; Fig. 5; see number of cells; countable object s=ce
cell-count concentration Concentration Cce [x∙L­-1] Tab. 4; Cce = NceV-1; count concentration C versus amount concentration c; subscript ce indicates the entity type: concentration of ce. But it does not signal 'per entity', which would be written as 'per cell' Xce.
cell mass Body mass mce [kg] Tab. 5; Fig. 5; mass of cells m versus mass per cell (per single entity cell) MXce
cell mass, mass per cell Body mass MXce [kg∙x­-1] Tab. 5; Fig. 5; mass per single cell MXce; upper case M and subscript X signal 'per count', subscript ce signals the entity s=ce; in a context restricted to cells or molecules or a particular organism such as humans, the abbreviated symbol M [kg∙x­-1] provides a sufficiently informative signal, particularly in combination with the explicit unit.
cell-mass concentration in chamber Concentration Cmce [kg∙L­-1] see Cms: Tab. 4; Cmce = mceV-1; upper case C alone would signal 'count concentration' (CN is more explicit), whereas the signal for 'mass concentration' is in the combination Cm.
cell viability index Cell viability VI - VI = NvceNce­-1 = 1 - NdceNce­-1
charge number per entity XB Charge number zB 1 zB = QB·e-1 (IUPAC); Tab. 6; zO2 = = QO2·e-1 = 4; IUPAC uses the term 'charge number of an ion' which should be changed to 'charge number per ion', or more clearly to 'charge number per ion number'. The symbol z carries the message 'number of elementary charges per number', and the subscript carries the message on the type of entity X.
Complexes I to IV Complex I CI to CIV - respiratory ET Complexes are redox proton pumps; Fig. 1B; F1FO-ATPase is not a redox proton pump of the ETS, hence the term CV is not recommended
concentration of B, amount Concentration cB = NB-1 [mol∙L­-1] SI: amount of substance concentration [[[Cohen 2008 IUPAC Green Book |24]]]; the molar and count formats are distinguished as nB and NB, respectively.
concentration of O2, amount Concentration cO2 = nO2-1 [mol∙L­-1] Box 2; [O2]
concentration of s, count Concentration Cs = Ns-1 [x∙L-1] Tab. 4 (number concentration [[[Cohen 2008 IUPAC Green Book |24]]]); the signal for count concentration is given by the upper case C in contrast to c for amount concentration. In both cases, the subscript X indicates the entity type, not to be confused with a number of entities.
count format Format N [x] Tab. 4, 5; Fig. 5
count of Xs Count Ns [x] SI; see number of entities Xs
coupling control Coupling-control ratio CCR - Section 2.4.1
coupling control state Coupling control state CCS - Section 2.4.1
dead cells Cell viability dce - Tab. 5
electrical format Format e [C] Tab. 6
electron transfer pathway Electron transfer pathway ET pathway - Overview; Fig. 1
electron transfer, state Electron transfer pathway ET - Tab. 1; Fig. 2B, 4 (State 3u)
electron transfer system Electron transfer pathway ETS - Fig. 2B, 4 (electron transport chain)
elementary entity Entity Xs [x] single countable object of sample type s; Tab. 4
ET capacity ET capacity E varies rate; Tab. 1; Fig. 2
ET-excess capacity ET capacity E-P varies Fig. 2
flow, for O2 Flow IO2 [mol∙s-­1] system-related extensive quantity; Fig. 5
flux, for O2 Flux JO2 varies size-specific quantity; Fig. 5
flux control ratio Flux control ratio FCR 1 background/reference flux; Fig. 5
hyphenation Hyphenation - - Updates in comparison to Gnaiger 2019 MitoFit Preprint Arch
inorganic phosphate Phosphate Pi - Fig. 1C
inorganic phosphate carrier Phosphate carrier PiC - Fig. 1C
International Union of Pure and Applied Chemistry, IUPAC IUPAC IUPAC - [[[Cohen 2008 IUPAC Green Book |24]]]
International System of Units International System of Units SI - [[[Cohen 2008 IUPAC Green Book |24]]]
isolated mitochondria Isolated mitochondria imt - [11]
LEAK state LEAK respiration LEAK - Tab. 1; Fig. 2 (compare State 4)
LEAK respiration LEAK respiration L varies rate; Tab. 1; Fig. 2
living cells Living cells ce - Tab. 5 (intact cells)
mass, dry mass Body mass md [kg] Fig. 5 (dry weight)
mass, wet mass Body mass mw [kg] Fig. 5 (wet weight)
mass concentration of sample s in chamber Concentration Cms [kg∙L-1] Tab. 4
mass format Format m [kg] Tab. 4
mass of sample s in a mixture Mass ms [kg] SI: mass of pure sample mS
mass per single object Body mass MNX [kg∙x­1] Fig. 5; Tab. 4; SI: m(X); compare molar mass M(X)
MITOCARTA MITOCARTA
mitochondria or mitochondrial Mitochondria mt - Box 1
mitochondrial concentration Mitochondrial marker, Concentration CmtE = mtEV-1 [mtEU∙L-1] Tab. 4
mitochondrial content per X Mitochondrial marker mtENX [mtEU∙x­-1] mtENX = mtENX-1; Tab. 4
mitochondrial density per ms Mitochondrial marker, Density DmtE/ms [mtEU∙kg­-1] DmtE/ms=mtEms-1; Tab. 4
mitochondrial density per Vs Mitochondrial marker, Density DmtE/Vs [mtEU∙kg­-1] DmtE/Vs=mtEVs-1; Tab. 4
mitochondrial DNA Mitochondria mtDNA - Box 1
mitochondrial elementary marker Mitochondria mtE [mtEU] quantity of mt-marker; Tab. 4
mitochondrial elementary unit Mitochondria mtEU varies specific units for mt-marker; Tab. 4
mitochondrial inner membrane Mitochondrial inner membrane mtIM - Fig. 1; Box 1 (MIM)
mitochondrial outer membrane Mitochondrial outer membrane mtOM - Fig. 1; Box 1 (MIM)
mitochondrial preparations Mitochondrial preparations mt-prep - Tab. 5
mitochondrial recovery Mitochondrial recovery YmtE 1 fraction of mtE recovered from the tissue sample in imt-stock
mitochondrial yield Mitochondrial yield YmtE/ms [mtEU∙kg-1] mt-yield in imt-stock per mass of tissue sample; YmtE/ms=YmtEDmtE
MitoPedia MitoPedia, MitoPedia: Respiratory states
molar format Format n [mol] Tab. 6
molar mass Molar mass MB [kg∙mol-1] compare MNB [kg∙x-1]; SI M(X)
negative Protonmotive force neg - Fig. 4
normalization of rate Normalization of rate - - Tab. 4; Fig. 5
number of cells Count Nce [x] total cell count of living cells, Nce = Nvce + Ndce; Tab. 4, 5
number of dead cells Cell viability Ndce [x] non-viable cell count, loss of plasma membrane barrier function; Tab. 5
number of entities B Count NB [x] Tab. 4 [[[Cohen 2008 IUPAC Green Book |24]]]
number of entities X; count Count NX [x] ‘count’ is an SI quantity [11], but the counting unit [x] is not in the SI [95]; Tab. 4; Fig. 5
number of viable cells Cell viability Nvce [x] viable cell count, intact plasma membrane barrier function; Tab. 5
organisms Organism org - Tab. 5
oxidative phosphorylation Oxidative phosphorylation OXPHOS - Tab. 1
OXPHOS capacity OXPHOS capacity P varies rate; Tab. 1; Fig. 2
OXPHOS state OXPHOS capacity OXPHOS - Tab. 1; Fig. 2; OXPHOS-state distinguished from the process OXPHOS (State 3 at kinetically-saturating [ADP] and [Pi])
oxygen concentration Oxygen concentration cO2 = nO2-1 [mol∙L­-1] [O2]; Section 3.2
oxygen solubility Oxygen solubility SO2 [µmol·kPa-1] Section 2.6.3
oxygen flux, in reaction r Oxygen flux JrO2 varies Overview
pathway control state Pathway control state PCS - Section 2.2
permeability transition Permeability transition mtPT - Fig. 3; Section 2.4.3 (MPT)
permeabilized cells Permeabilized cells pce - experimental permeabilization of plasma membrane; Tab. 5
permeabilized muscle fibers Permeabilized muscle fibers pfi - Tab. 5
permeabilized tissue Permeabilized tissue pti - Tab. 5
phosphorylation of ADP to ATP Oxidative phosphorylation - Tab. 1, 2; Fig. 1, 4
phosphorylation efficiency Ergodynamic efficiency ε 1 Section 2.4.1
P»/O2 ratio Oxidative phosphorylation P»/O2 1 mechanistic YP»/O2, calculated from pump stoichiometries; Fig. 1c
positive positive Protonmotive force - Fig. 4
proton in the neg compartment Protonmotive force H+neg [x] Fig. 4
proton in the pos compartment proton in the positive compartment H+pos [x] Fig. 4
protonmotive force protonmotive force pmF [V] Overview; Tab. 1; Fig 1a, 2, 4
rate in ET state Electron transfer pathway E varies ET capacity; Tab. 1; Fig. 2, 4
rate in LEAK state LEAK respiration L varies Tab. 1: L(n), L(T), L(Omy); Fig. 2, 4
rate in OXPHOS state OXPHOS capacity P varies OXPHOS capacity; Tab.1; Fig. 2, 4
rate in ROX state Residual oxygen consumption Rox varies Overview; Tab. 1
residual oxygen consumption Residual oxygen consumption ROX; Rox - state ROX; rate Rox; Tab. 1
respiration Respirometry JrO2 varies rate of reaction r; Overview
respiratory state MitoPedia: Respiratory states - - Tab. 1, 3; Fig. 2, 4
respiratory supercomplex Supercomplex SCInIIInIVn - supramolecular assemblies with variable copy numbers (n) of CI, CIII and CIV; Box 1
sample in a mixture Sample s - diluted sample; Tab. 4, 5
steay state Steady state - - Section 2.5.6
substrate concentration at half-maximal rate Concentration c50 [mol∙L­-1] Section 2.1.2
substrate-uncoupler-inhibitor-titration Substrate-uncoupler-inhibitor titration SUIT - Section 2.2
system System - - Fig. 5
tissue homogenate Tissue homogenate thom - Tab. 5
uncoupling Uncoupler titrations - - Tab 2; Fig. 3
viable cells Viable cells vce - Tab. 5
volume format Format V [L] Tab. 6
volume of experimental chamber Volume V [L] liquid volume V including the sample s; Tab. 4, 7; Fig. 5
volume of sample s in a mixture Volume Vs [L] Tab. 5; Fig. 5