Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''[[Template:Base quantities and count]]'''". Since there have been only a few results, also nearby values are displayed.

Showing below up to 11 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Units in figures and tables  + ('''Units in figures and tables''' are spec'''Units in figures and tables''' are specified together with the numerical values. The ''value'' of a quantity ''Q'' is the product of a [[number]] ''N'' and a [[unit]] ''u''<sub>''Q''</sub>. Abstract units ''u''<sub>''Q''</sub> (such as dm<sup>3</sup>=L, kg, J) are linked to measured quantities (such as volume, mass, energy): </br> Eq.(1) ''Q''<sub>''u''</sub> = ''N''·''u''<sub>''Q''</sub></br></br>The multiplication in Eq.(1) can be handled like any mathematical equation and re-arranged to the form which indicates the meaning (left) of a number (right): </br> Eq.(2a) ''Q''<sub>''u''</sub>/''u''<sub>''Q''</sub> = ''N''</br> Eq.(2b) ''N''<sub>''X''</sub>/x = ''N''</br></br>When numbers are given on the axes of figures and in tables, the corresponding labels should be indicated according to Eq.(2), where Eq.(2a) applies to measured quantities, whereas Eq.(2b) relates to the countable quantity, i.e. [[count]] with unit [x]. For example, the axis label for volume-specific oxygen flux may be written as ''J''<sub>''V'',O<sub>2</sub></sub> / [pmol/(s·mL)] and cell-count specific oxygen flow as ''I''<sub>O<sub>2</sub></sub> / [amol/(s·x)].s ''J''<sub>''V'',O<sub>2</sub></sub> / [pmol/(s·mL)] and cell-count specific oxygen flow as ''I''<sub>O<sub>2</sub></sub> / [amol/(s·x)].)
  • Velocity  + ('''Velocity''', '''''v''''' [m·s<sup>'''Velocity''', '''''v''''' [m·s<sup>-1</sup>], is the [[speed]] in a defined spatial direction, and as such velocity is a [[vector]]. Velocity is the [[advancement]] in distance per unit time,</br> '''''v''''' ≡ d'''''z''''' ∙ d''t''<sup>-1</sup> [m·s<sup>-1</sup>] d'''''z''''' ∙ d''t''<sup>-1</sup> [m·s<sup>-1</sup>])
  • Viable cells  + ('''Viable cells''' vce are characterized by an intact plasma membrane barrier function. The total cell count (''N''<sub>ce</sub>) is the sum of viable cells (''N''<sub>vce</sub>) and dead cells (''N''<sub>dce</sub>).)
  • Viton  + ('''Viton'''® is a fluoroelastomer with excellent resistance to aggressive fuels and chemicals. Viton is resistant against oxygen diffusion which makes it an ideal material for high-resolution respirometry (Viton O-rings).)
  • Volume  + ('''Volume''' ''V'' is a derived quantity b'''Volume''' ''V'' is a derived quantity based on the SI base quantity [[length]] [m] and is expressed in terms of [[SI base units]] in the derived unit cubic meter [m<sup>3</sup>]. The liter [L = dm<sup>3</sup>] is a conventional unit of volume for concentration and is used for most solution chemical kinetics. The volume ''V'' contained in a system (experimental chamber) is separated from the environment by the system boundaries; this is called the volume of the system, and described in practical language as big/small (derived from [[length]], [[height]]) or voluminous. Systems are defined at constant volume or constant [[pressure]]. For a pure sample S, the volume ''V''<sub>S</sub> of the pure sample equals the volume ''V'' of the system, ''V''<sub>S</sub> = ''V''. For [[sample]] s in a mixture, the ratio ''V''<sub>s</sub>·''V''<sup>-1</sup> is the nondimensional [[volume fraction]] ''Φ''<sub>s</sub> of sample s. Quantities divided by volume are [[concentration]]s of sample s in a mixture, such as [[count]] concentration ''C<sub>X</sub>'' = ''N<sub>X</sub>''·''V''<sup>-1</sup> [x·L<sup>-1</sup>], and amount of substance concentration ''C''<sub>B</sub> = ''n''<sub>B</sub>·''V''<sup>-1</sup> [mol·L<sup>-1</sup>]. Mass concentration is [[density]] ''ρ''<sub>s</sub> = ''m''<sub>s</sub>·''V''<sup>-1</sup> [kg·L<sup>-1</sup>]. In closed compressible systems (with a gas phase), the concentration of the gas increases, when pressure-volume [[work]] is performed on the system.is performed on the system.)
  • Wavelength averaging  + ('''Wavelength averaging''' is the averagin'''Wavelength averaging''' is the averaging of several adjacent data points across the recorded spectrum (spectral [[smoothing]]), to improve the [[signal-to-noise ratio]]. For example, if the instrument recorded 5 data points per nm, the average of the 5 points can be taken for each successive nm across the range of the spectrum to give a 5-point smoothing. This method clearly reduces the wavelength [[resolution]].[[resolution]].)
  • Work  + ('''Work''' [J] is a specific form of [[energy]]'''Work''' [J] is a specific form of [[energy]] in the First Law of thermodynamics, and a specific form of [[exergy]] in the Second Law of thermodynamics, performed by a closed or open system on its surroundings (the environment). This is the definition of ''external'' work, which is zero in [[isolated system]]s. The term exergy includes external and internal work. Mechanical work is force [N] times path length [m]. The internal-energy change of a closed system, d''U'', is due to external exchange (e) of work and heat, and external total work (et, including pressure-volume work) is the internal-energy change minus heat,</br> d<sub>et</sub>''W'' = d''U'' - d<sub>e</sub>''Q''b>et</sub>''W'' = d''U'' - d<sub>e</sub>''Q'')
  • Zero calibration  + ('''Zero calibration''' is, together with [[air calibration]]'''Zero calibration''' is, together with [[air calibration]], one of the two steps of the POS calibration. It is performed in the [[closed chamber]] after all the oxygen has been depleted by the addition of [[dithionite]] or by respiration of [[Isolated mitochondria |imt]] or [[Living cells |cells]]. Any incubation medium can be used for zero calibration with dithionite or sample. Unlike air calibration, it is not necessary to perform a zero calibration on each experimental day. After performing a zero calibration, it is recommended not running other experiments on the same day. Even after standard cleaning of the O2k-chambers, there might be residual amounts of reduced dithionite in the chamber, affecting the oxygen flux in subsequent experiments performed on the same day.ent experiments performed on the same day.)
  • DatLab 2  + ('''[[DatLab]] 2''' (DL2) is a MS-DOS programe. DL2 is still used for analysis of [[oxygen kinetics]], after exporting files recorded in recent DatLab versions. A user-friendly O2-kinetics module is in preparation (DL8).)
  • Substrates as electron donors  + ('''[[Substrate]]'''[[Substrate]]s as electron donors''' are reduced fuel compounds ''S''<sub>red</sub> that are oxidized to an oxidized product ''P''<sub>ox</sub> during H<sup>+</sup>-linked electron transfer, ''S''<sub>red</sub> → ''P''<sub>ox</sub> + 2{H<sup>+</sup> + e<sup>-</sup>}. Mitochondrial respiration depends on a continuous flow of electron-supplying substrates across the mitochondrial membranes into the matrix space. Many substrates are strong anions that cannot permeate lipid membranes and hence require carriers.anes into the matrix space. Many substrates are strong anions that cannot permeate lipid membranes and hence require carriers.)
  • ArXiv preprint server  + ('''arXiv''' is a classic preprint server i'''arXiv''' is a classic preprint server initiated in 1991 by Paul Ginsparg. {''Quote''} arXiv.org is a highly-automated electronic archive and distribution server for research articles. Covered areas include physics, mathematics, computer science, nonlinear sciences, quantitative biology, quantitative finance, statistics, electrical engineering and systems science, and economics. arXiv is maintained and operated by Cornell University with guidance from the arXiv Scientific Advisory Board and the arXiv Member Advisory Board, and with the help of numerous subject moderators. {''end of Quote''}. arXiv rejects abstracts that are submitted without accompanying paper. are submitted without accompanying paper.)
  • BioRxiv preprint server for biology  + ('''bioRxiv''' (pronounced "bio-archive") i'''bioRxiv''' (pronounced "bio-archive") is a free online archive and distribution service for unpublished preprints in the life sciences. It was launched in 2013 by Cold Spring Harbor Laboratory Press in New York, and is operated by Cold Spring Harbor Laboratory, a not-for-profit research and educational institution. By posting preprints on bioRxiv, authors are able to make their findings immediately available to the scientific community and receive feedback on draft manuscripts before they are submitted to journals. bioRxiv is intended for rapid sharing of new research. Some review articles contain new data/analyses and may therefore be deemed appropriate. Reviews that solely summarize existing knowledge are not appropriate and neither are term papers, book excerpts, and undergraduate dissertations.excerpts, and undergraduate dissertations.)
  • PH calibration buffers  + ('''pH calibration buffers''' are prepared to obtain two or more defined pH values for calibration of pH electrodes and pH indicator dyes.)
  • PH combination electrode 150/6 mm  + ('''pH combination electrode''', 150 mm shaft, 6 mm diameter, incl. connection cable with BNC plug. '''Discontinued''' * Replaced by [[O2k-pH ISE-Module]].)
  • PH combination electrode 70/5 mm  + ('''pH-Combination Electrode\70/5 mm''', 70 mm shaft, 5 mm diameter, for 30251-24 stopper. ''' Discontinued ''' * Replaced by [[O2k-pH ISE-Module]].)
  • PX calibration - DatLab  + ('''pX calibration''')
  • Hydroxybutyrate  + ('''β-hydroxybutyrate''' or 3-hydroxybutyrate is a ketone body that can be used as a [[NADH electron transfer-pathway state|NADH-linked substrate]]. The β-hydroxybutyrate dehydrogenase produces acetoacetate while reducing NAD<sup>+</sup> to [[NADH]]. <br>)
  • Complex I-linked substrate state  + (''See'' '''[[N-pathway control state]]''' (previous: CI-linked) versus '''[[Complex I]]''')
  • CI control ratio  + (''See'' '''[[N/NS pathway control ratio]]''')
  • Complex I&II-linked substrate state  + (''See'' '''[[NS-pathway control state]]''' (previous: CI<small>&</small>II-linked))