Description
Coenzyme Q or ubiquinone (2,3-dimethoxy-5-methyl-6-polyprenyl-1,4-benzoquinone) was discovered in 1957 by the group of Crane. It is a lipid composed of a benzoquinone ring with an isoprenoid side chain, two methoxy groups and one methyl group. The length of the isoprenoid chain varies depending on the species; for example, six isoprenoid units (CoQ6) is the most commonly found CoQ in Saccharomyces cerevisiae, eight units in Escherichia coli (CoQ8), nine units in Caenorhabditis elegans and rodents (CoQ9), ten units in humans (CoQ10), and some species have more than one CoQ form, e.g. human and rodent mitochondria contain different proportions of CoQ9 and CoQ10. These redox compounds exist in three different forms: quinone (oxidized), quinol (reduced), and an intermediate semiquinone.
More details » Q-junction
Abbreviation: Q, CoQ
Reference: Aberg 1992 Arch Biochem Biophys, Aussel 2014 Biochim Biophys Acta, Awad 2018 Essays Biochem, Crane 1956 Biochim Biophys Acta, Gnaiger 2020 BEC MitoPathways, HernĂĄndez-Camacho 2018 Frontiers in physiology, Song 2011 Free Radical Biol Med, Watts 2017 Genetics, Wolf 1958 J Am Chem Soc
Nomenclature
- Different forms are used to write coenzyme Q-10 in the literature: CoQ10 or CoQ10 or CoQ-10.
- CoQ10 is most commonly used in biochemistry, in line with EMBL (ChEBI ontology): https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:46245. Accordingly, the number N of isoprenoid units is indicated as CoQN.
- Q-n is recommended by IUPAC for ubiquinone-n: https://iupac.qmul.ac.uk/misc/quinone.html
- Different forms are used to write coenzyme Q-10 in the literature: CoQ10 or CoQ10 or CoQ-10.
- CoQ10 refers to all protonation states and the three redox states. It is useful to specify redox states by distinguishing CoQ10 (all species) from the oxidized ubiquinone-10 (UQ10), the reduced ubiquinol-10 (UQ10H2), and the free radical ubisemiquinone (USQ10âąâ). Song and Buettner (2011) use Q/SQâąâ/H2Q for the quinone/semiquinone/hydroquinone triad. Whereas H2Q fits the term hydroquinone, the most commonly used term is (ubi)quinol with the corresponding acronyms QH2 and UQH2.
- The redox states of plant plastoquinone-9 can be distinguished as PQ9 and PQ9H2. Hauvaux (2020) uses PQ-9 for the total pool of plastoquinone-9.
Name | State | Abbreviation | Example |
---|---|---|---|
coenzyme Q | all protonation and redox states | CoQ | CoQ10 |
ubiquinone | oxidized | UQ | UQ10 |
ubiquinol | reduced | UQH2 | UQ10H2 |
ubisemiquinone | free radical | USQâąâ | USQ10âąâ |
Application in HRR
- See: Coenzyme Q2
Keywords
- Bioblast links: Q - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>
- Coenzyme Q
- » Coenzyme Q
- » Quinone, Ubiquinone Q; oxidized
- » Quinol, Ubiquinol QH2; reduced
- » Semiquinone
- » Coenzyme Q2
- » Q-redox state
- » Q-pools
- Coenzyme Q
- Mitochondrial pathways, respiratory Complexes, and Q
- » Q-cycle
- » Q-junction
- » Convergent electron flow
- » NS-pathway
- » FNS
- » FNSGp
- Mitochondrial pathways, respiratory Complexes, and Q
- » N-pathway
- » Reverse electron flow from CII to CI
- » CI
- » Rotenone
- » Amytal
- » Piericidin
- NextGen-O2k and Q-Module
- » NextGen-O2k
- » Q-Module
- » Q-Sensor
- » Cyclic voltammetry
- » Three-electrode system
- NextGen-O2k and Q-Module
- General
MitoPedia: mitObesity drugs
Healthy reference population | Body mass excess | BFE | BME cutoffs | BMI | H | M | VO2max | mitObesity drugs |
Publications: Q-junction
Year | Reference | Organism | Tissue;cell | Stress | Diseases | |
---|---|---|---|---|---|---|
Pallag 2022 MitoFit Proline | 2022 | Pallag G, Nazarian S, Ravasz D, Bui D, KomlĂłdi T, Doerrier C, Gnaiger E, Seyfried TN, Chinopoulos C (2022) Proline oxidation leading to high electron flow through reduction of ubiquinone supports ATP production by F1FO-ATPase in mitochondria with inhibited Complex I. https://doi.org/10.26124/mitofit:2022-0001.v3 â 2022-05-04 published in https://doi.org/10.3390/ijms23095111 | Mouse | Heart Kidney Liver Nervous system | ||
Spielmann 2022 Mamm Genome | 2022 | Spielmann N, Schenkl C, KomlĂłdi T, da Silva-Buttkus P, Heyne E, Rohde J, Amarie OV, Rathkolb B, Gnaiger E, Doenst T, Fuchs H, Gailus-Durner V, de Angelis MH, Szibor M (2022) Knockout of the Complex III subunit Uqcrh causes bioenergetic impairment and cardiac contractile dysfunction. Mamm Genome 10.1007/s00335-022-09973-w | Mouse | Heart | Oxidative stress;RONS Mitochondrial disease | |
Komlodi 2021 BEC Q | 2021 | KomlĂłdi T, Cardoso LHD, Doerrier C, Moore AL, Rich PR, Gnaiger E (2021) Coupling and pathway control of coenzyme Q redox state and respiration in isolated mitochondria. https://doi.org/10.26124/bec:2021-0003 | Mouse | Heart Nervous system | ||
Spinazzi 2019 Proc Natl Acad Sci U S A | 2019 | Spinazzi M, Radaelli E, Horré K, Arranz AM, Gounko NV, Agostinis P, Maia TM, Impens F, Morais VA, Lopez-Lluch G, Serneels L, Navas P, De Strooper B (2019) PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci U S A 116:277-86. | Mouse | Nervous system | Neurodegenerative | |
Szibor 2019 Biochim Biophys Acta Bioenerg | 2019 | Szibor Marten, Gainutdinov Timur, Fernandez-Vizarra Erika, Dufour Eric, Gizatullina Zemfira, Debska-Vielhaber Grazyna, Heidler Juliana, Wittig Ilka, Viscomi Carlo, Gellerich Frank Norbert, Moore Anthony L (2019) Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: switch from RET and ROS to FET. Biochim Biophys Acta Bioenerg 1861:148137. | Mouse | Heart | ||
Lemieux 2019 bioRxiv | 2019 | Lemieux H, Subarsky P, Doblander C, Wurm M, Troppmair J, Gnaiger E (2019) Mitochondrial respiratory function as an early biomarker of apoptosis induced by growth factor removal. bioRxiv doi: https://doi.org/10.1101/151480 . | Mouse | Blood cells | Cell death | Cancer |
Cermakova 2019 Parasite | 2019 | ÄermĂĄkovĂĄ P, Kovalinka T, FerenczyovĂĄ K, HorvĂĄth A (2019) Coenzyme Q2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids. Parasite 26:17. | ||||
Osakai 2019 Electrochemistry | 2019 | Osakai T, Yamamoto T, Ueki M (2019) Directional electron transfer from ubiquinone-10 to cytochrome c at a biomimetic self-assembled monolayer modified electrode. Electrochemistry 87:59-64. | ||||
Takahashi 2019 Arch Biochem Biophys | 2019 | Takahashi T, Mine Y, Okamoto T (2019) Extracellular coenzyme Q10 (CoQ10) is reduced to ubiquinol-10 by intact Hep G2 cells independent of intracellular CoQ10 reduction. Arch Biochem Biophys 672:108067. | ||||
Martinez-Cifuentes 2017 Molecules | 2017 | MartĂnez-Cifuentes M, Salazar R, RamĂrez-RodrĂguez O, Weiss-LĂłpez B, Araya-Maturana R (2017) Experimental and theoretical reduction potentials of some biologically active ortho-carbonyl para-quinones. Molecules 22:577. | ||||
Fragaki 2016 Biol Res | 2016 | Fragaki K, Chaussenot A, Benoist JF, Ait-El-Mkadem S, Bannwarth S, Rouzier C, Cochaud C, Paquis-Flucklinger V (2016) Coenzyme Q10 defects may be associated with a deficiency of Q10-independent mitochondrial respiratory chain complexes. Biol Res 49:4. | ||||
Gulaboski 2016 J Solid State Electrochem | 2016 | Gulaboski R, Markovski V, Jihe Z (2016) Redox chemistry of coenzyme Qâa short overview of the voltammetric features. J Solid State Electrochem 20:3229â3238. | ||||
Acosta 2016 Biochim Biophys Acta | 2016 | Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857:1079-85. | ||||
GarcĂa-Corzo 2015 Biochim Biophys Acta | 2015 | GarcĂa-Corzo L, Luna-SĂĄnchez M, Doerrier C, Ortiz F, Escames G, Acuña-Castroviejo D, LĂłpez LC (2015) Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 1842:893-901. | ||||
Petrova 2014 Proc Chem | 2014 | Petrova EV, Korotkova EI, Kratochvil B, Voronova OA, Dorozhko EV, Bulycheva EV (2014) Investigation of coenzyme Q10 by voltammetry. Proc Chem 10:173-8. https://doi.org/10.1016/j.proche.2014.10.030. | ||||
Enriquez 2014 Mol Syndromol | 2014 | Enriquez JA, Lenaz G (2014) Coenzyme Q and the respiratory chain: coenzyme Q pool and mitochondrial supercomplexes. Mol Syndromol 5:119-40. | Oxidative stress;RONS | |||
La Guardia 2013 Front Physiol | 2013 | La Guardia PG, Alberici LC, Ravagnani FG, Catharino RR, Vercesi AE (2013) Protection of rat skeletal muscle fibers by either L-carnitine or coenzyme Q10 against statins toxicity mediated by mitochondrial reactive oxygen generation. Front Physiol 4:103. | Rat | Skeletal muscle | Oxidative stress;RONS | |
Tang 2012 Methods Mol Biol | 2012 | Tang PH, Miles MV (2012) Measurement of oxidized and reduced coenzyme Q in biological fluids, cells, and tissues: an HPLC-EC method. Methods Mol Biol 837:149-68. | ||||
Song 2011 Free Radical Biol Med | 2011 | Song Y, Buettner GR (2011) Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radical Biol Med 919-62. | Oxidative stress;RONS | |||
Albury 2009 Physiol Plant | 2009 | Albury MS, Elliott C, Moore AL (2009) Towards a structural elucidation of the alternative oxidase in plants. Physiol Plant 137:316-27. | ||||
Ausili 2008 J Phys Chem B | 2008 | Ausili A, Torrecillas A, Aranda F, de Godos A, SĂĄnchez-Bautista S, CorbalĂĄn-GarcĂa S, GĂłmez-FernĂĄndez JC (2008) Redox state of coenzyme Q10 determines its membrane localization. J Phys Chem B 112:12696-702. | ||||
Michalkiewicz 2007 Bioelectrochemistry | 2007 | Michalkiewicz S (2007) Cathodic reduction of coenzyme Q10 on glassy carbon electrode in acetic acid-acetonitrile solutions. Bioelectrochemistry 70:495-500. | ||||
Lenaz 2007 Am J Physiol Cell Physiol | 2007 | Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221-39. doi: 10.1152/ajpcell.00263.2006. | ||||
Pich 2002 Free Radic Res | 2002 | Pich MM, Castagnoli A, Biondi A, Bernacchia A, Tazzari PL, D'Aurelio M, Castelli GP, Formiggini G, Conte R, Bovina C, Lenaz G (2002) Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress. Free Radic Res 36:429-36. | Blood cells Platelet | Oxidative stress;RONS | Aging;senescence | |
Affourtit 2001 J Biol Chem | 2001 | Affourtit C, Krab K, Leach GR, Whitehouse DG, Moore AL (2001) New insights into the regulation of plant succinate dehydrogenase. On the role of the protonmotive force. J Biol Chem 276:32567-74. | ||||
Cooley 2001 J Bacteriol | 2001 | Cooley JW, Vermaas WFJ (2001) Succinate Dehydrogenase and Other Respiratory Pathways in Thylakoid Membranes of Synechocystis sp. Strain PCC 6803: Capacity Comparisons and Physiological Function. J Bacteriol 183:4251-8. | ||||
Goetz 2000 J Neural Transm (Vienna) | 2000 | Götz ME, Gerstner A, Harth R, Dirr A, Janetzky B, Kuhn W, Riederer P, Gerlach M (2000) Altered redox state of platelet coenzyme Q10 in Parkinson's disease. J Neural Transm (Vienna) 107:41-8. | ||||
Affourtit 1999 J Biol Chem | 1999 | Affourtit C, Albury MS, Krab K, Moore AL (1999) Functional expression of the plant alternative oxidase affects growth of the yeast Schizosaccharomyces pombe. J Biol Chem 274:6212-8. | ||||
Wagner 1998 Plant Physiol | 1998 | Wagner AM, Wagner MJ, Moore AL (1998) In vivo ubiquinone reduction levels during thermogenesis in araceae. Plant Physiol 117:1501-6. | ||||
Meunier 1995 Biochemistry | 1995 | Meunier B, Madgwick SA, Reil E, Oettmeier W, Rich PR (1995) New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry 34:1076-83. | ||||
Rauchova 1995 Physiol Res | 1995 | RauchovĂĄ H, Drahota Z, Lenaz G (1995) Function of coenzyme Q in the cell: some biochemical and physiological properties. Physiol Res 44:209-16. | ||||
Van den Bergen 1994 Eur J Biochem | 1994 | Van den Bergen CW, Wagner AM, Krab K, Moore AL (1994) The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways. Eur J Biochem 226:1071-8. | ||||
Moore 1991 Plant Physiol | 1991 | Moore AL, Dry IB, Wiskich JT (1991) Regulation of electron transport in plant mitochondria under state 4 conditions. Plant Physiol 95:34-40. | ||||
Day 1991 Plant Physiol | 1991 | Day DA, Dry IB, Soole KL, Wiskich JT, Moore AL (1991) Regulation of alternative pathway activity in plant mitochondria: deviations from Q-pool behavior during oxidation of NADH and quinols. Plant Physiol 95:948-53. | ||||
Zannoni 1990 FEBS Lett | 1990 | Zannoni D, Moore AL (1990) Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271:123-7. | ||||
Dry 1989 Arch Biochem Biophys | 1989 | Dry IB, Moore AL, Day DA, Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273:148-57. | ||||
Moore 1988 FEBS Letters | 1988 | Moore AL, Dry IB, Wiskich TJ (1988) Measurement of the redox state of the ubiquinone pool in plant mitochondria. FEBS Lett 235:76-80. | Plants | |||
Ragan 1985 Biochim Biophys Acta | 1985 | Ragan CI, Cottingham IR (1985) The kinetics of quinone pools in electron transport. Biochim Biophys Acta 811:13-31. | ||||
Rich 1984 Biochim Biophys Acta | 1984 | Rich PR (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochim Biophys Acta 768:53-79. | ||||
Rich 1979 FEBS Lett | 1979 | Rich PR, Bendall DS (1979) A mechanism for the reduction of cytochromes by quinols in solution and its relevance to biological electron transfer reactions. FEBS Lett 105:189-94. | ||||
Mitchell 1979 Science | 1979 | Mitchell P (1979) Keilinâs respiratory chain concept and its chemiosmotic consequences. Science 206:1148-59. | ||||
Mitchell 1975 FEBS Letters | 1975 | Mitchell P (1975) The protonmotive Q cycle: A general formulation. FEBS Lett 59:137-9. | ||||
Kroeger 1973 Eur J Biochem | 1973 | Kröger A, Klingenberg M (1973) The kinetics of the redox reactions of ubiquinone related to the electron-transport activity in the respiratory chain. Eur J Biochem 34:358-68. | Bovines | Heart | ||
Kroeger 1973b Eur J Biochem | 1973 | Kröger A, Klingenberg M (1973) Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313-23. | Bovines | Heart | ||
Gutman 1972 FEBS Lett | 1972 | Gutman M, Silman N (1972) Mutual inhibition between NADH oxidase and succinoxidase activities in respiring submitochondrial particles. FEBS Lett 26:207-10. doi: 10.1016/0014-5793(72)80574-x. | ||||
Gutman 1971 Biochemistry | 1971 | Gutman M, Coles CJ, Singer TP, Casida JE (1971) On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction. Biochemistry 10:2036-43. | ||||
Ernster 1969 Eur J Biochem | 1969 | Ernster L, Lee IY, Norling B, Persson B (1969) Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b. Eur J Biochem 9:299-310. | Bovines | Heart | ||
Mitchell 2011 Biochim Biophys Acta | 1966 | Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. https://doi.org/10.1016/j.bbabio.2011.09.018 | ||||
Kroeger 1966 Biochem Z | 1966 | Kröger A, Klingenberg M (1966) On the role of ubiquinone in mitochondria. II. Redox reactions of ubiquinone under the control of oxidative phosphorylation. Biochem Z 344:317-36. | Bovines | Heart |
- Abstracts: Q-junction
Year | Reference | Organism | Tissue;cell | Stress | Diseases | |
---|---|---|---|---|---|---|
Ravasz 2019 Abstract IOC141 | 2019 | Ravasz D, Bui D, Kitayev A, Greenwood B, Hill C, Komlodi T, Doerrier C, Ozohanics O, Moore AL, Gnaiger E, Kiebish M, Kolev K, Seyfried TN, Willis WT, Narain N, Adam-Vizi V, Chinopoulos C (2019) Endogenous quinones sustain a moderate NADH oxidation by Complex I during anoxia. Mitochondr Physiol Network 24.02. | Mouse | Liver | ||
Komlodi 2018b EBEC2018 | 2018 | Endogenous quinones sustain NADH oxidation by Complex I during anoxia, supporting substrate-level phosphorylation in mouse liver mitochondria. | Mouse | Liver | Permeability transition Oxidative stress;RONS | |
Komlodi 2018 EBEC2018 | 2018 | Electron supply to the Q-junction: assessment of mitochondrial respiration, H2O2 flux and the redox state of the Q-pool. | Mouse | Nervous system | Oxidative stress;RONS | |
Ravasz 2018 Abstract The evolving concept of mitochondria | 2018 | Vast pools of endogenous quinones sustain NADH oxidation by Complex I during anoxia, supporting substrate-level phosphorylation in mouse liver mitochondria. | Mouse | Liver | Other | |
Komlodi 2018 AussieMit | 2018 | Komlodi T, Hunger M, Moore AL, Gnaiger E (2018) Electron transfer at the Q-junction: new perspectives from combined measurement of mitochondrial O2 flux, H2O2 flux, and coenzyme Q redox state. AussieMit 2018 Melbourne AU. | Mouse | Nervous system | ||
Komlodi 2017 MiPschool Obergurgl | 2017 | Electron pressure exerted by convergent succinate- and glycerophosphate-pathways to the Q-junction regulate reversed electron transfer to Complex I and H2O2 production. | Mouse | Nervous system | Oxidative stress;RONS | |
Moore 2017 MiPschool Obergurgl | 2017 | The electron transfer-pathway â Q redox regulation and mitochondrial pathways to oxygen. |
CoQ and mitObesity
Work in progress by Gnaiger E 2020-02-10 linked to a preprint in preparation on BME and mitObesity.