02k-Manual: Oxia

Mitochondrial Physiology Network 26.14(01):1-8 (2021)

Version 01: 2021-12-20 @2021 Oroboros

Updates: https://wiki.oroboros.at/index.php/MiPNet26.14 Oxia

Oxia - HyperOxia to Hypoxia

Sabine Schmitt¹, Alexander Merth², Michael Walter-Vracevic², Erich Gnaiger¹

¹Oroboros Instruments

High-Resolution Respirometry Schoepfstrasse 18, 6020 Innsbruck, Austria Email: <u>instruments@oroboros.at</u> www.oroboros.at

²WGT-Elektronik GmbH & Co KG

Rettenbergstraße 30a, A-6114 Kolsass, Austria

Contents

	Intended use	
	Safety	
3.	Components	2
	Specifications	
4.1.	Technical specifications	4
4.2.	Ambient conditions	4
	Safety specifications	
5.	Operating instructions	4
5.1.	Assembly	4
5.2.	Production and withdrawal of O ₂ and H ₂ gas	5
5.3.	Setting O ₂ concentrations in the O2k-chamber using O ₂ or H ₂ gas	6
	Storage	
	Troubleshooting	
	Author contributions and acknowledgements	

1. Intended use

The Oxia generates gaseous oxygen and hydrogen by electrolysis of water using a proton exchange membrane (PEM). O_2 and H_2 gas can be used to control the O_2 regime in the Oroboros O2k. Low oxygen concentrations (<50 μ M) are used to mimic tissue normoxia or hypoxia. Hyperoxic conditions above air saturation (250-600 μ M O_2) are routinely used for high-resolution respirometry of permeabilized muscle fibers or to induce oxidative stress in cells and mitochondrial preparations.

2. Safety

- Before operating the Oxia, read the user manual.
- Flammable gases, Category 1. Keep the Oxia away from heat, hot surfaces, sparks, open flames, and other ignition sources.

- The produced gas is for laboratory use only.
- Do not leave running unattended.
- Do not run overnight.
- Do not switch on the Oxia without the Oxia-Cell being connected to the Oxia-Base.
- Do not operate the Oxia without water in the H₂O-chamber.
- Do not use any liquid besides deionized or distilled H₂O to run the Oxia.
- Do not use grease on the valves.
- Do not run the Oxia in a space smaller than 9 m³, such as a small cabinet.
- Unless there is a continuous air exchange, air the room for 5 min after 20 cycles of gas production.
- Do not cover the Oxia while it is running/during operation.
- The Oxia must only be operated with a power supply or USB-C to USB-C cable supplied or recommended by Oroboros Instruments.
- The Oxia-Base must not be exposed to liquids (IP Code 21).
- Use different syringes for the withdrawal of O₂ or H₂ gas, respectively.
- Do not disassemble the Oxia-Cell by loosening the hex head screws.
- Any servicing or repair must only be done by the manufacturer. In case of any problems please contact Oroboros Instruments (https://www.oroboros.at/index.php/o2k-technical-support/).

3. Components

Oxia-Base

(1) Power button on the front, (2) electrical contact pins, (3) LEDs for gas chamber illumination, (4) stainless steel assembly guide, red circles: sensors to detect filling of the O₂- and H₂-chambers on top, and USB-C socket (not shown) on the rear.

Oxia-Cell

Proton exchange membrane (PEM) electrolysis cell and (1) separate H₂O-chambers A (left) and B (right), which are connected to the (2) O₂ or (3) H₂-chamber, respectively. (4) The Luer Lock connections with spring valves allow for gas withdrawal from the O₂- and H₂-chamber.

Cloth Cover

to protect the Oxia-Cell from contamination during storage.

Gas syringes

10 mL syringes with Luer Lock connection for gas withdrawal from the O₂- and H₂-chamber and gas injection into the O₂k-chamber.

O2k-Injection needle

with spacer to obtain the correct insertion length for gas injection into the O2k-chambers.

Voltage supply

USB-C to USB-C cable to connect the Oxia to the O2k (I-Series or higher; NextGen-O2k). Alternatively, the Oxia can be plugged to a power socket via an external power supply.

Do not use a USB-A to USB-C adapter.

Use only the power supply provided by the manufacturer.

4. Specifications

4.1. Technical specifications

Voltage supply: USB-C Power supply with 1.5 A, 5 V, max. 7.5 W

Dimensions: 138x108x206 mm

Weight: 1.5 kg

Gas production rate: 02: 7 mL/min

 H_2 : 14 mL/min

Volume of two H₂O-chambers: 37 mL
Volume of O₂-chamber: 32 mL
Volume of H₂-chamber: 32 mL

4.2. Ambient conditions

Operating temperature: 5-40 °C

Maximum height above sea level: 2000 m

Maximum relative air humidity: 80 % at 31 °C, 50 % at 40 °C; linear temperature

dependence

Tolerance of voltage supply: max ±10 %

4.3. Safety specifications

- Optical sensors for the O₂- and H₂-chamber stop electrolysis and thereby gas production as soon as the water is completely replaced by gas, indicated by illumination (blue) of the respective gas chamber.
- If gas production is not automatically stopped upon filling of one of the gas chambers, the excessive gas escapes to the H₂O-chamber. The H₂O-chambers are open to allow the gas to escape. The separator between the two H₂O-chambers prevents mixing of H₂ and O₂. Thus, there is no risk of oxyhydrogen combustion.
- The minimum cubature of the room (>9 m³) and frequent air exchange (see above) prevents the formation of oxyhydrogen, as under atmospheric pressure, the volume fraction of hydrogen is kept below 4 %.

5. Operating instructions

5.1. Assembly

Ensure the Oxia power is switched off (power button is not illuminated) when the Oxia-Cell is not connected to the Oxia-Base.

1. Both H₂O-chambers and both gas chambers of the Oxia-Cell must be empty before assembly.

- a. To remove residual water from the H₂O-, O₂-, and H₂-chambers, switch off the Oxia and unplug the Oxia-Cell from the Oxia-Base.
- b. Remove water from the H₂O-chambers by turning the Oxia-Cell upside down.
- c. Withdraw residual water from the O₂- and H₂-chambers with a gas syringe via the Luer Lock connection with the Oxia-Cell upside down.
- 2. Plug the Oxia-Cell onto the Oxia-Base. The stainless-steel assembly guide on the Oxia-Base must line up with the corresponding hole on the bottom of the Oxia-Cell to ensure it is aligned correctly. The Oxia-Cell is flush against the Oxia-Base if inserted correctly.

5.2. Production and withdrawal of O2 and H2 gas

Before switching on the device, ensure that the Oxia-Cell is correctly connected to the Oxia-Base.

- 1. Fill both H₂O-chambers with deionized or distilled H₂O to the fill mark (1).
- 2. Screw an empty gas syringe with the piston fully inserted onto the Luer connector of the O₂-chamber and withdraw air from the O₂-chamber by suction (2). Thereby, the water is sucked from the corresponding H₂O-chamber into the O₂-chamber. Repeat until the water level is right beneath the spring valve, as seen from the side (3) or on top (4).
- 3. Repeat step 2 for the H₂-chamber.

4. Connect the Oxia (USB-C socket on the rear of the Oxia-Base) to the USB-C socket on the rear of the O2k (I-Series or higher; NextGen-O2k) via the supplied USB-C to USB-C cable, or to a power socket via the external Power Supply.

- 5. Start gas generation by pressing the power button on the front of the Oxia-Base. The power button is illuminated in blue indicating that the Oxia is on.
- 6. Let the Oxia run until the H₂-chamber is filled with gas or until enough O₂ or H₂ gas is produced for your experiment. Water electrolysis and thereby gas production stops automatically when the O₂- or H₂-chamber is filled with gas. The blue illumination is automatically switched on in the respective chamber.
- 7. If only one type of gas $(O_2 ext{ or } H_2)$ is needed, the other gas can be continuously released by screwing an open syringe onto the respective Luer Lock connector.
- 8. It is recommended to withdraw the gas right before injection to the O2k-chamber as it mixes with air when stored in the open gas syringe. The gas can be stored for up to one hour in the gas chamber of the Oxia-Cell.
- 9. For gas withdrawal, screw a gas syringe to the Luer Lock connector of the Oxia-Cell. Pull out the amount of gas needed for the experiment. Screw the O2k-Injection needle immediately onto the gas syringe. Use only the provided needle and spacer to obtain the correct insertion length for gas injection into the O2k-chambers.
- 10. One filling of the H₂O-chambers is sufficient for about 25 cycles.
- 11. Before refilling a H₂O-chamber the respective gas chamber must be filled completely with gas. Otherwise H₂O may spill over upon gas production.

5.3. Setting O₂ concentrations in the O2k-chamber using O₂ or H₂ gas

- 1. Lift the stopper of the O2k-chamber into the open position using the Stopper-Spacer. Gas injection into aqueous phase must be strictly avoided.
- 2. Insert the injection needle into the titration port and gently inject the gas.
- 3. Remove the injection needle.
- 4. When the targeted O_2 concentration is approached, gently insert the stopper fully to close the O2k-chamber.

Further details:

https://wiki.oroboros.at/index.php/Setting the oxygen concentration

Traces of O₂ concentration in the O2k-chamber upon injection of (a) O₂ and (b) H₂ gas: The O2k-chambers were not closed to illustrate the time courses of the O₂ regime after injections of (a) 2 mL O₂ or (b) 8 mL H₂. 2 mL experimental O2k-chamber volume with MiRO5 at 37 °C.

5.4. Storage

- Remove residual water from the H₂O-, O₂-, and H₂-chambers as described in 5.1, Step 1.
- Cover the Oxia-Cell with the Cloth Cover to protected from contamination. There is no need to clean the Oxia-Cell internally. Never use an alcohol-based cleaner or any strong acidic or alkaline solutions as this can damage the material of the Oxia-Cell.

6. Troubleshooting

- Air is sucked into the O₂- or H₂-chamber if the H₂O-chambers are empty during gas withdrawal. ⇒ Switch off the Oxia. Unplug the Oxia-Cell and repeat steps of section 5.1 and steps 1 and 2 of section 5.2.
- Water spills over during gas generation if too much water is added to the H₂O-chambers. ⇒ Switch off the Oxia. Unplug the Oxia-Cell and repeat steps of section 5.1 and steps 1 and 2 of section 5.2.
- Water is sucked into the Luer Lock connector. ⇒ Let the Oxia run for about 5 min. Carefully suction gas thereby removing residual water from the Luer Lock connector. Repeat if necessary.

• Power button flashes. ⇒ Ensure that the Oxia-Cell is correctly plugged onto the Oxia-Base (see section 5.1, step 2) and that the H₂O-chamber contains enough water (repeat steps from section 5.1).

- Power button is still flashing although the Oxia-Cell is correctly inserted. ⇒ Contact Oroboros Technical Support.
- Gas escapes to the H_2O -chambers. \Rightarrow Contact Oroboros Technical Support
- Gas production does not stop automatically when the gas chambers are filled with gas. ⇒ Contact Oroboros Technical Support.

Technical Support is provided by:

Oroboros Instruments
High-Resolution Respirometry
Schoepfstrasse 18, 6020 Innsbruck, Austria
https://www.oroboros.at/index.php/support/

7. Author contributions and acknowledgements

Gnaiger E was responsible for the concept of the project. Walter-Vracevic M, and Merth A were responsible for electronic and mechanical development of the Oxia. Schmitt S and Gnaiger E prepared the manual and all coauthors contributed to the final version. We thank Lisa Tindle-Solomon for proofreading and Paolo Cocco for graphics.