

Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain

Raffaella Crescenzo¹ • Maria Stefania Spagnuolo² • Rosa Cancelliere¹ • Lucia Iannotta¹ • Arianna Mazzoli¹ • Cristina Gatto¹ • Susanna Iossa¹ • • Luisa Cigliano¹

Effect of age and/or dietary treatment on brain mitochondrial physiology

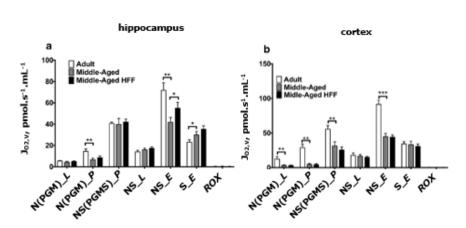
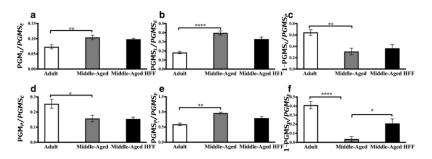
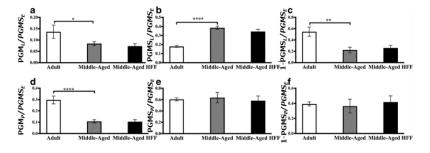




Figure 1. Age-induced decrease in ADP or FCCP supported respiration with N-linked substrates or NSlinked substrates, respectively. High-Fat/High Fructose (HFF) diet increases respiration with N- and NS-linked substrates in the hippocampus mitochondria (a). Mitochondria from the frontal cortex suffer a significant agerelated decrease with N- and NSsubstrates with respiration effect from HFF diet (b). Values are means \pm SEM (N = 8, *p < 0.05, **p < 0.01, ***p < 0.010.001). *

Impaired coupling efficiency and limitation by ATP synthase in an age-dependent manner

Functional impairment of Complex I with age in the cortex

Figures 2 and 3. Respiratory flux control ratios and coupling control factors in hippocampus (2) and frontal cortex (3). Leak respiration with electron provision from complex I $(PGM_L/PGMS_E)$ (a) and complexes I and II (PGM $S_L/PGMS_E$) **(b)**, coupling efficiency of oxidative phosphorylation (1 PGMS_L/PGMSP) phosphorylating respiration electron provision from complex I $(PGM_P/PGMS_E)$ (d), and complexes I and II ($PGMS_P/PGMS_E$) (e), apparent excess capacity of the electron transport chain $(1 - PGM_P/PGMS_E)$ (f) Values are the means \pm SEM (N=8). *p < 0.05, ** p < 0.01, **** p < 0.0001

ADP = $N(PGM)_P$, succinate = $NS(PGMS)_P$, oligomycin = NS_L , FCCP = NS_E , rotenone = S_E , antimycin A = ROX

 PGM_L = LEAK respiration with complex I substrate; PGMS_L = LEAK respiration with complex I and II substrates; PGMP = phosphorylating respiration with complex I substrate; PGMS_P = phosphorylating respiration with complex I and II substrates; PGMS_E = maximum capacity of the electron transfer pathway with complex I and II substrates

Reference: Crescenzo R, Spagnuolo MS, Cancelliere R, Iannotta L, Mazzoli A, Gatto C, Iossa S, Cigliano L (2019) Effect of initial aging and high-fat/high-fructose diet on mitochondrial bioenergetics and oxidative status in rat brain. Mol Neurobiol [Epub ahead of print].

 $\textbf{Text and figures slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. \\ \underline{\texttt{Doi:}10.26124/\texttt{mitofit:}190001.v6}$