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Abstract 
 

Protein kinases take the center stage in numerous 
signaling pathways by phosphorylating 
compartmentalized protein substrates for controlling 
cell proliferation, cell cycle and metabolism. Kinase 
dysfunctions have been linked to numerous human 
diseases such as cancer. This has led to the 
development of kinase inhibitors which aim to target 
oncogenic kinase activities. The specificity of the 
cancer blockers depends on the range of targeted 
kinases. Therefore, the question arises of how cell-
type-specific off-target effects impair the specificities 
of cancer drugs. Blockade of kinase activities has been 
shown to converge on the energetic organelle, the 
mitochondria. In this review, we highlight examples of 
selected major kinases which impact mitochondrial 
signaling. Further, we discuss pharmacological 
strategies to target kinase activities which are linked 
to cancer progression and redirecting mitochondrial 
function. Finally, we propose that cell-based 
recordings of mitochondrial bioenergetic states 
might predict off-target or identify specific on-target 
effects of kinase inhibitors. 

 

1. Introduction 
 

Cells transmit environmental cues through intracellular signaling networks to 
translate the spatiotemporal input signal into the appropriate cellular response. In 
numerous signaling pathways post-translational modifications (PTMs) and the formation 
of diverse molecular interactions (i.e. protein:protein, RNA/DNA:protein and small 
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molecule:protein interactions) take the center stage for adapting cellular functions 
through alterations of gene expression, cell proliferation and cell energy metabolism 
(Langeberg, Scott 2015; Nooren, Thornton 2003). Protein kinases are at the heart of 
numerous signaling pathways. Conventionally, kinases catalyze the transfer of the gamma 
phosphate of ATP to defined amino acids of their target proteins resulting in a change in 
enzymatic activity, cellular localization, stability and/or physical interactions. Most 
human phosphotransferases are serine/threonine kinases through phosphorylating 
hydroxyl groups of serines and threonines. The others are classified as tyrosine 
phosphorylating kinases (Ramms et al 2021; Taylor et al 2012b; Ubersax 2007). 

 

Kinase deregulation has been linked to several human diseases, primarily 
carcinogenesis (Cohen 2002; Ramms et al 2021). Thus, kinases have become the subject 
of intensive academic and pharmaceutical research. Small molecules targeting 
decontrolled kinase activities currently are among the most effective drugs in target-
oriented cancer therapy (Bhullar et al 2018; Karaman et al 2008; Zhang et al 2009). Kinase 
inhibitors (KIs) have received FDA approval for the treatment of a collection of 
malignancies (Roskoski 2019). Much more than 150 kinase-targeted drugs are in the late 
clinical phase trials and numerous are in the preclinical stage of drug development. Many 
of those molecules represent ATP-competitive inhibitors, especially for their use in cancer 
treatments (Bhullar et al 2018; Hartmann et al 2009). 

 

In this review, we highlight a selection of major kinases which regulate 
mitochondrial function. Further, we discuss current pharmacological strategies which are 
based on small molecules/kinase inhibitors to target kinase activities linked to cancer 
progression showing diverse effects on mitochondria (Figure 1). First, we list a selection 
of major kinases that participate in modulating mitochondrial dynamics and bioenergetic 
states. Second, we present KI strategies that somehow redirect mitochondria signaling. 
Third, we emphasize off-target effects of anti-cancer small molecules and how drug-
induced effects on mitochondria function may contribute to unintended pharmaceutical 
responses. 

 
2. Protein kinases modulate mitochondria 
 

Mitochondria are the powerhouses of the cell. Besides its central bioenergetic 
function, mitochondria adopt important roles in cellular signaling and they are central 
contributions to cell apoptosis, autophagy and cell differentiation (Gnaiger 2020; Rinaldi 
et al 2018). Phosphorylation of mitochondrial proteins has been connected with 
mitochondrial dysfunction. Besides aging diseases such as neurodegeneration, diabetes 
and cancer have been linked to deregulation of the central ATP producing organelle 
(Burté et al 2014; Wallace 2012). The current literature has identified at least 30 kinases 
which have been reported to be functionally linked and/or to phosphorylate 
mitochondrial proteins (Kotrasova et al 2021; Lucero et al 2019). Thus, we have decided 
to present a short selection of protein kinases linked to mitochondria which are targets of 
kinase blockers.  

 

In the following, we discuss two membrane receptor pathways which are linked to 
kinase functions, G-protein coupled receptors (GPCRs) and receptor tyrosine kinases 
(RTKs) respectively. Many extracellular stimuli are sensed by GPCRs to mobilize second 
messenger oscillations (Dorsam, Gutkind 2007). The cAMP-dependent protein kinase A 
(PKA) is one of the best-studied examples of a second messenger sensor (cAMP) and 
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allosteric protein complex (Ramms et al 2021; Taylor et al 2012a). Besides its 
multifaceted functions, macromolecular PKA complexes have been linked to 
mitochondrial physiology  (Rinaldi et al 2018; Torres-Quesada et al 2017). Distinct PKA 
regulatory subunits are anchored to the mitochondrial outer membrane (mtOM) through 
the A kinase anchoring protein 1 (AKAP1) (Affaitati et al 2003). PKA substrates 
compartmentalized at the mtOM are the dynamin-related protein 1 (DRP1) and the 
voltage-dependent anion channel (VDAC). PKA phosphorylates DRP1 and thus blocks its 
translocation to the mitochondrial surface to influence mitochondrial fission (Chang, 
Blackstone 2007). PKA phosphorylates VDAC to modulate the Ca2+ uptake and control 
mitochondrial function such as energy production and the initiation of cell death (Bera, 
Ghosh 2001). In the mitochondrial matrix, PKA has been shown to phosphorylate the 
NADH:ubiquinone oxidoreductase (Complex I, CI) and the cytochrome c oxidase (Complex 
IV, CIV, COX). Phosphorylation of the CI (NDUFS4 subunit) has been demonstrated to 
increase the enzymatic activity and is relevant for its translocation from the cytosol into 
the mitochondria (De Rasmo et al 2008). In contrast, elevated levels of PKA cause the 
hyperphosphorylation of several COX subunits (i.e. COX1, COX4-1 and COX5b) which are 
associated with decreased CIV activity (Prabu et al 2006). 

 

RTKs represent the second major receptor pathway, thus we would like to briefly 
review this cascade in the context of mitochondrial signaling. Growth factors fine-tune 
mitochondrial activity by redirecting intracellular kinase signaling. RTKs represent a 
family of precisely controlled receptors that control cell proliferation, cell differentiation, 
and cell death (Casaletto, McClatchey 2012; Lemmon, Schlessinger 2010). It has been 
shown that the mitogen-activated protein kinase pathway (MAPK) targets mitochondria 
displaying relevance for energy metabolism (Javadov et al 2014). The gatekeeper kinase 
MEK activates ERK1/2 by phosphorylation. In this context ERK1/2 activities have been 
linked to redirect mitochondrial (dys)function, mitophagy, and apoptosis. This may 
involve the phosphorylation of mitochondrial proteins such as DRP1 and TRAP1, thereby 
regulating the mitochondrial membrane potential (ΔΨmt) and protecting cancer cells from 
apoptosis (Kotrasova et al 2021). Another highly conserved transduction cascade 
activated by growth factors is the phosphoinositide 3-kinase (PI3K)/ protein kinase B 
(AKT) pathway. AKT has been shown to compartmentalize with mitochondria and thus 
may phosphorylate elements of the electron transfer pathway (ET-pathway) at the level 
of the ATP synthase. This molecular event enhances the ATP production in cardiac cells 
(Yang et al 2013) and plays a role in the inactivation of several pro-apoptotic proteins at 
the mitochondria for inducing cell survival (Datta et al 1997). Activation of the PI3K 
pathway is linked to mitochondrial function via protein kinase C (PKC). Activated PKC 
shows colocalization with mitochondria and translocation into the mitochondrial matrix 
to phosphorylate target proteins. PKC activities are involved in preventing mitochondrial 
injury upon cellular stress (Lim et al 2016). The proto-oncogene tyrosine-protein kinases 
(SRC) are key regulators of cell proliferation, differentiation, survival, cell morphology 
and motility (Parsons, Parsons 2004). SRC kinases are cytoplasmic proteins. There are 
evidences of SRC localization to the mitochondria to act as molecular switch for 
controlling mitochondrial function (Djeungoue-Petga et al 2019). SRC kinases 
phosphorylate components of the ET-pathway such as CI subunits (i.e. NDUFV2 and 
NDUFB10) which increases the levels of respiration. SRC activates the succinate 
dehydrogenase (Complex II, CII) in response to cellular adaptation to nutrient availability 
(Acin-Perez et al 2014). Another kinase that contributes to adaptions of mitochondrial 
function and are activated by growth factors is the c-Jun N-terminal kinases (JNK). JNK 
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may have pro-apoptotic but also anti-apoptotic functions at the mitochondria, depending 
on the cell type and stimulus. For example, JNK is indirectly activated by cytochrome c 
release from mitochondria and it was shown to amplify the ROS generation at CI, 
contributing to cell death (Shen, Liu 2006; Zheng et al 2017). However, it has been shown 
that JNK is necessary for interleukin 3 (IL-3)-mediated cell survival via phosphorylation 
and inactivation of Bcl2-associated agonist of cell death (BAD) (Yu et al 2004). 

 

Mitochondrial signaling is connected with metabolic control units and energy 
metabolism. One of the key sensors of energy homeostasis is the AMP-activated protein 
kinase (AMPK). AMPK activity increases in dependence of AMP and ADP levels. These are 
central and direct metabolic ques for adjusting the states of mitochondrial bioenergetics 
(Herzig, Shaw 2018). In the cytoplasm, AMPK is regulated by an activated trimeric 
LKB1/STRAD/MO25 complex. As a consequence of high-energy demand AMPK is found 
at the mtOM for phosphorylating several factors related to mitochondrial fission (i.e. 
DRP1, MFF), mitophagy and mitochondrial biogenesis (Zhang, Lin 2016). AMPK is a key 
player in maintaining mitochondrial quality control. In cellular energy stress conditions, 
mitochondrial populations present different morphologies and dynamics (i.e. changes in 
ΔΨmt, fragmentation or inhibitors of the ET-pathway) which activate AMPK feedback 
loops to further promote mitochondrial fission and autophagy, thus serving as a 
molecular rheostat of mitochondrial quality (Drake et al 2021; Zhang et al 2018). Another 
key kinase controlling mitochondrial quality is the PTEN-induced kinase 1 (PINK1). 
PINK1 mutations are linked to autosomal recessive familial Parkinson’s Disease (PD) 
(Jones 2010). PINK1 is expressed in mammalian cells and it accumulates in specific 
mitochondria compartments, being found on the inner and outer mitochondrial 
membrane. PINK1 regulates Parkin, which acts as an E3 ubiquitin ligase. PINK1 recruits 
Parkin to depolarize mitochondria. While PINK1 is imported and rapidly degraded by 
mitochondrial proteases with intact membrane potential, PINK1 breakdown is impaired 
in mitochondria with reduced membrane potential thus serving as a quality control unit 
for ensuring mitochondrial quality (Wang et al 2020). In addition, PINK1 phosphorylates 
DRP1. Low levels of PINK1-phosphorylated DRP1 have been found in cells originating 
from PD patients.  This may represent a novel mechanism of regulation of mitochondrial 
dynamics independently of Parkin (Han et al 2020). Moreover, loss of PINK1 has been 
linked with CI damage and oxidative stress (Morais et al 2014).  

 

Here, we have listed a selection of major kinases linked to mitochondrial function. It 
pinpoints the high complexity of mitochondrial-centered kinase signaling pathways 
which converge at the energetic organelle at different levels. Many aspects of 
kinase:mitochodria interlinkage have not been unveiled yet due to enigmatic effects of 
non-specific kinase inhibitors on mitochondria.  
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Figure 1. Perturbing the mitochondrial kinase network. Mitochondria consist of 
four compartments: outer membrane (mtOM), intermembrane space (mtIMS), inner 
membrane (mtIM) and matrix. The oxidative phosphorylation (OXPHOS) system 
comprises the respiratory electron-transfer-pathway capacity  (ET) and the ATP 
synthase where the reduced fuel substrates coming from the tricarboxylic acid cycle 
(TCA) and other metabolic pathways are oxidized by electron transfer, chemiosmotic 
coupling to the phosphorylation of ADP to ATP and intrinsically uncoupling by proton 
leak, cation cycling and electron leak (LEAK, L). Electrons fuel from NADH-linked 
substrates to CI and from succinate&rotenone to CII converging at the Q-junction and 
transferred to Complex III (CIII), cytochrome c (c) and CIV, where reduce a molecule of 
O2 to produce H2O. The protonmotive force generated is dissipated at the ATP synthase 
to generate ATP from ADP. Growth factors bind to receptor-tyrosine kinases (RTKs) 
and may activate cell type specifically ERK, SRC, AKT and PKA kinases. These might be 
involved in directly/indirectly influencing activities of the respiratory complexes or 
mtOM proteins by phosphorylation and control mitochondrial dynamics and 
bioenergetics. AMPK, PKA and JNK are activated by diverse types of membrane 
receptors 
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3. Kinase inhibitors affect mitochondrial function 
 

Many anti-cancer therapies are designed to directly target specific molecules to 
antagonize cancer cell proliferation. Especially KIs targeting mutated kinases have proven 
the concept of personalized medicine with better outcomes for cancer patients. The 
specificities of these KIs have been extensively studied as a strategy for drug repurposing 
and understanding drug resistance mechanisms. Interestingly, it has been revealed that 
many KIs have unexpected activities on other cellular pathways thus explaining off-target 
effects (Klaeger et al 2017; Lin et al 2019; ZhangLoughran 2011). 

 

Specific-spectrum KIs represent one strategy to tackle aberrant cell functions by 
targeting a single kinase. However, off-target effects of KI affect other cellular functions 
amongst others e.g. the mitochondrial bioenergetic states (Wynn et al 2011). For example, 
BRAF inhibitors (i.e. vemurafenib, dabrafenib) have been designed to block the BRAF 
kinase mutation V600E in melanoma (Karoulia et al 2017; Mayrhofer et al 2020; Röck et 
al 2019). In contrast, MEK inhibitors target wild-type proteins (Caunt et al 2015). They 
are combined with BRAFi to reduce emerging resistance mechanisms in the melanoma 
patients (Dossett et al 2015; Fleischmann et al 2021). Despite the high specificity of 
mutated BRAF, BRAFi influence mitochondrial function. In melanoma cells, BRAFi 
treatment drives the intrinsic aerobic glycolytic phenotype inherent in cancer cells to a 
more oxidative metabolism by increasing mitochondrial OXPHOS and elevating ROS 
production (Avagliano et al 2020). Other specific KIs targeting the PI3K pathway have 
been identified to redirect mitochondrial function. For example, AKT inhibitors are 
proposed to be a new generation of more efficient blockers of cancer (i.e. capivasertib and 
ipatasertib, Phase III clinical trials). They are supposed to target the protective effect of 
AKT on mitochondria (Martorana et al 2021). However, it is still elusive how the 
mitochondrial bioenergetic states are altered. In the case of the PKC inhibitor cisplatin, it 
has been shown that cancer cells treated with this KI undergo apoptotic cell death which 
is related to enhancing of ROS levels, mtDNA damage and reduced energy production 
(Choi et al 2015). Kinase blockade of other mitochondria-associated kinases such as JNK 
and SRC could be beneficial for cancer therapy but the exact impact on mitochondrial 
respiration has not been evaluated yet. 

 

Besides the discussed KIs, the largest group of kinase blockers used for cancer 
therapy are the tyrosine-kinase inhibitors (TKIs). They have been established in recent 
years to become the preferential first- and second-line therapy for many cancer types. 
TKIs inhibit the binding of ATP to the catalytic binding site of tyrosine kinases. It is of note, 
that they differ in the spectrum of targeted kinases, the pharmacokinetics and side effects 
(Hartmann et al 2009; Rodriguez-Hernandez et al 2020). For example, sorafenib and 
sunitinib target growth factor receptors (i.e. VEGFR, PDGFR). Sorafenib targets around 70 
kinases and sunitinib blocks 170 (Karaman et al 2008). TKIs have been reported to cause 

receptors (i.e. GPCRs and interleukin receptors, IL-R, respectively) and control 
mitochondrial fission, ET-pathway and apoptosis. AMPK and PINK1 are the 
mitochondrial rheostat for energy state and quality control in response to cellular 
stress. Kinase inhibitors (black boxes) modulate mitochondrial function by inhibiting 
kinase activities. The specificity and efficacy depend on cell type, timing and doses of 
the applied inhibitors which determine the portfolio of kinases (on-target and off-
target) that are affected. 
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mitochondrial damage. Effects on the ET-pathway (i.e. CI damage), apoptosis, mitophagy, 
ROS production, and altered mitochondrial dynamics (mitochondrial fission and 
fragmentation) are well-described effects related with the mito-toxicity of TKIs (i.e. 
cardiotoxicity or hepatoxicity) (Rodriguez-Hernandez et al 2020; Vuda, Kamath 2016). 
These effects are related to off-target drug effects, therefore, the knowledge of kinase 
inhibition related to physiological and pathological functions which are connected to 
mitochondria perturbations is necessary to anticipate specificities and drug efficacies. 

 

Other small molecule-related intervention strategies have been reported to produce 
side effects and to affect mitochondrial function. For example, metformin is extensively 
used as therapy for type-2 diabetes patients. Metformin in a pharmacological dose 
improves mitochondrial respiration by promoting AMPK-dependent mitochondrial 
fission. In lower doses, metformin has been identified to target CI and, inhibit PKA-
dependent CIV activation and the mitochondrial glycerophosphate dehydrogenase 
(LaMoia et al 2022; Wang et al 2019). Moreover, metformin also indirectly activates 
AMPK by activation of LKB1 (Foretz et al 2010) thus influencing cellular energy 
metabolism. This may involve mitochondria but the precise mechanistic mode of 
regulating mitochondrial bioenergetics remains poorly understood. Other examples of 
small molecules modulating mitochondrial dynamics (i.e. biogenesis) have been 
described. This involves, for example the GPCR-agonist formoterol which activates the 
beta-2 adrenergic receptor pathway, which somehow redirects mitochondrial 
bioenergetics (Cameron et al 2017). 

 

In conclusion, kinase inhibitors are the drug of choice for treating different types of 
cancers. Their varying target specificities contribute to a more or less effective blockade 
of oncogenic signaling events. Off-target effects of small molecules are the major 
drawbacks of effective therapies. Amongst others, these are related to unwanted effects 
on mitochondria function which are interlinked with kinase activities and thus are 
hampered upon small molecule exposure. Therefore, we would like to propose that more 
systematic profiling of mitochondrial bioenergetic states in the presence and absence of 
lead molecules or kinase drugs could become an asset for anticipating non-desired off-
target drug features.  
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